mGWAS-Explorer 2.0 Tutorial

- Crohn's disease case study

Goal for this tutorial

• Identify the causal associations between metabolites and Crohn's disease

MR Concept

- Mendelian randomization (MR) is a research method that uses <u>genetic</u> <u>variants</u> as natural experiments to examine probable causal relationships between <u>exposure</u> risk factor and <u>disease outcome</u>.
- Compared to conventional observational research, MR is less susceptible to <u>confounding</u> and <u>reverse causality</u>.
- Assumptions:
 - Relevance assumption (IV1): the instruments must be associated with the exposure risk factor
 - Exclusion restriction assumption (IV2): the only way the IVs influence the outcome is through the relevant exposure risk factor
 - Independence assumption (IV3): the IVs must not associate with confounders

Background

- Colocalization analysis between **arachidonic acid** mQTL and **Crohn's disease** GWAS's profile strongly supported the hypothesis that arachidonic acid <u>share</u> <u>common genetic variants</u> with Crohn's disease (Chu et al., 2021)
- Therefore, we applied the **Mendelian randomization** method to test the **causal effect** of arachidonic acid on Crohn's disease using mGWAS-Explorer 2.0

Starting up

- Go to the mGWAS-Explorer homepage (<u>www.mgwas.ca</u>)
- Click on the "MR" button to enter the data upload page for MR module

Exposure data (metabolite)

1.

2.

3.

acid" in the search box

Click "Search" button

(in) Upload Please use the tabs below to prepare your input. Make sure to click Submit button before switching to the next tab. Exposures Outcomes Copy and paste "Arachidonic Enter metabolite Arachidonic acid Advanced Filter >> Search 5 Reset e.g., arachidonic acid Arachidonic acid Select from the drop-down list SNP ID 1 Chr ↑↓ Position 1 A1 1↓ A2 11 Beta ↑↓ SE Î↓ PMID ↑↓ Metabolite 1 P-value 1⊥ Action arachidonate (20:4n6) rs174548 11 61571348 С G 0.0488 0.0025 1.430e-84 24816252 Delete arachidonate (20:4n6) rs174556 11 61580635 Т C -0.0488 0.0025 2.980e-84 24816252 Delete arachidonate (20:4n6) 11 61570783 Т 0.048 0.0025 8.760e-84 24816252 rs174547 C Delete arachidonate (20:4n6) rs174555 11 61579760 Т C 0.0481 0.0025 6.580e-82 24816252 Delete arachidonate (20:4n6) rs174550 11 61571478 т С 0.0475 0.0025 7.430e-82 24816252 Delete 11 arachidonate (20:4n6) rs174546 61569830 Т C -0.0476 0.0025 7.910e-82 24816252 Delete 11 arachidonate (20:4n6) rs174549 61571382 Α G -0.048 0.0025 8.180e-82 24816252 Delete arachidonate (20:4n6) rs174545 11 61569306 С G 0.0476 0.0025 8.310e-82 24816252 Delete 11 arachidonate (20:4n6) rs174574 61600342 А С -0.0475 0.0025 1.230e-81 24816252 Delete arachidonate (20:4n6) rs102275 11 61557803 т С 0.0475 0.0025 2.040e-81 24816252 Delete arachidonate (20:4n6) rs174535 11 61551356 Т C 0.0475 0.0025 2.050e-81 24816252 Delete arachidonate (20:4n6) rs174536 11 61551927 Α С 0.0475 0.0025 2.050e-81 24816252 Delete 11 arachidonate (20:4n6) rs174537 61552680 Т G -0.0475 0.0025 2.050e-81 24816252 Delete arachidonate (20:4n6) re1535 6150707 0.0469 0.0025 1.5000-70 24816252 Delete Data uploaded outcome exposure

- Note: use advanced filter to select a mGWAS study
 - Here we chose Shin et al. *Nature genetics* (2014), PMID: 24816252

res Outcomes										
Enter metabo e.g., arachido	Arachidonic aci	d 🕜	>> Search					(🎯 A	dvanced Filter	S Reset
Metabolite ↑↓	SNP ID ↑↓	Chr ↑↓	Position ↑↓	Data Filter Dialog			× tt	P-value ↑↓	PMID ↑↓	Action
rachidonate (20:4n6)	rs174548	11	61571348	Target Column:	PMID V	1	5	1.430e-84	24816252	Delete
achidonate (20:4n6)	rs174556	11	61580635			J	5	2.980e-84	24816252	Delete
achidonate (20:4n6)	rs174547	11	61570783		(Character) Containing 🗸		5	8.760e-84	24816252	Delete
achidonate (20:4n6)	rs174555	11	61579760	value criterion:	24816252		5	6.580e-82	24816252	Delete
achidonate (20:4n6)	rs174550	11	61571478		C Remove O Kee	<u>.</u>	5	7.430e-82	24816252	Delete
achidonate (20:4n6)	rs174546	11	61569830	Action		a 🔘 Keep	5	7.910e-82	24816252	Delete
achidonate (20:4n6)	rs174549	11	61571382		Submit		5	8.180e-82	24816252	Delete
achidonate (20:4n6)	rs174545	11	61569306				5	8.310e-82	24816252	Delete
achidonate (20:4n6)	rs174574	11	61600342	A	с	-0.0475	0.0025	1.230e-81	24816252	Delete
achidonate (20:4n6)	rs102275	11	61557803	т	с	0.0475	0.0025	2.040e-81	24816252	Delete
achidonate (20:4n6)	rs174535	11	61551356	т	с	0.0475	0.0025	2.050e-81	24816252	Delete
achidonate (20:4n6)	rs174536	11	61551927	А	С	0.0475	0.0025	2.050e-81	24816252	Delete
achidonate (20:4n6)	rs174537	11	61552680	т	G	-0.0475	0.0025	2.050e-81	24816252	Delete

Outcome data (disease)

1 > Upload

Exposures

Outcome

Please use the tabs below to prepare your input. Make sure to click Submit button before switching to the next tab.

- 1. Copy and paste "Crohn's disease" in the search box
- 2. Select from the drop-down list
- 3. Click "Search" button
- After both exposure and outcome data are uploaded, click "Proceed" button

Enter disease e.g., Crohn's disease	Crohn's disease	>> Search						
	Crohn's disease ebi-a-GCST003044							
	Crohn's disease ebi-a-GCST004132							
D ↑↓ Trait ↑↓	Crohn's disease ieu-a-10 Crohn's disease ieu-a-11 Crohn's disease ieu-a-12		ber of Cases ↑↓	Number of Controls 1	Sample Size ↑↓	Number of Variants ↑↓	Year ↑↓	PMID 1
i-a-GCST004132 Crohn's dise	Crohn's disease ieu-a-13			28072	40266	9457998	2017	28067908

Here we chose de Lange et al. *Nature genetics* (2017), PMID: 28067908

Data uploaded: 👽 exposure 🔽 outcome 🌔 troceed

Run MR

Here we chose five commonly used MR methods: MR Egger, weighted median, Inverse variance weighted, simple mode, and weighted mode

> Upload > Parameters > Results

Process your data below 😗

C LD Clumping	 Do not check for LD between SNPs Use clumping to prune SNPs for LD
Turne Contraction	Use proxies Minimum LD R ² value: Image: Allow palindromic SNPs MAF threshold for aligning palindromes:
③ Allele Harmonization	Assume all alleles are presented on the forward strand Try to infer the forward strand alleles using allele frequency information Correct the strand for non-palindromic SNPs, but drop all palindromic SNPs
Methods Selection	Methods Selections
	MR Egger MR Egger (bootstrap) Simple median Veighted median

MR results

endelian Randomization										OK OK	
Methods	MR Results					geneity Tests		Horizontal Pleiotropy		Please see MR results below.	
	Number of SNPs	Beta	SE	P value	Q	Q_df	Q_pval	Egger Intercept	SE	P value	
Inverse variance weighted	20	-0.248	0.421	0.555	33	19	0.024	-	-	201	
MR Egger	20	-0.333	0.95	0.73	33	18	0.0167	0.00131	0.0131	0.921	
Simple mode	20	0.0753	0.695	0.915	-	-	-	-	-	-	
Weighted median	20	-0.257	0.467	0.582	-		-	-	-	2.53	
Weighted mode	20	-0.0589	0.557	0.917	-	-	-	-	-	-	

Forest Plot Scatter Plot Funnel Plot Leave-one-out Sensitivity Snalysis

Tips

The forest plot compares the causal effect calculated using the methods that include all the SNPs to using.

MR results

	MR Results			
Methods	Number of SNPs	Beta	SE	P value
Inverse variance weighted	24	-0.91	0.313	0.0036
MR Egger	24	-1.39	0.523	0.0146
Simple mode	24	-0.128	0.646	0.844
Weighted median	24	-1.5	0.335	7.55e-06
Weighted mode	24	-1.48	0.322	0.000126

Consistently shows that the decrease in **arachidonic acid** level had a causal effect on **Crohn's disease**

Leave-one-out plot

- Each black point represents the MR method applied to estimate the causal effect of AA on CD excluding that particular SNP from the analysis
- Exclusion of rs174548 leads to larger changes in the result

Network-mapping

- Input:
 - o rs174548
 - SNP-metabolite
 - SNP-gene (EUR, r²>0.7)
 - SNP-disease
 - arachidonic acid
 - metabolite-SNP
 - metabolite-gene
 - metabolite-disease
- Degree filter > 1
- Shortest path view

mGWAS-Explorer 2.0 is able to provide multiple evidence that arachidonic acid is causally associated with Crohn's disease, suggesting it is a potential therapeutic target.

